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ASC/NGC Gitlab Tutorial  
 $ man gittutorial{,-2} | gitlab.lanl.gov 

 Christoph Junghans, CCS-7 

June 8, 2016 
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Pull request Workflow 
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Version Control Systems in a Nutshell 

VCS manage changes to documents or source code. 
Definitions: 
•  Repository: data structure which stores metadata for a 

set of files and/or directory structure 
•  Patch: unified way to represent a change 
•  Commit: adding a patch (with a message) to the VCS 
•  Checkout: Get a certain version from the repository 
•  Diff: representation of a commit in patch format 
•  Revision: A certain (previous) state of the repository 
•  Rollback: Go back to an older version 
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Exercise – Manual diffing and patching 

•  Create a file: 
"seq 1 10 > file" 

•  "cp file file.old" 
•  Edit file 
•  Create a patch:"diff -u 

file file.old > patch" 
•  "rm file.old" 
•  Apply patch: 

"patch –p0 <patch" 

•  Look at patchfile 
– Header 
– Line-wise remove 

and add 
•  Linus: "We literally 

used tarballs and 
patches, which is a 
much superior source 
control management 
system than CVS is." 



Slide 5 U N C L A S S I F I E D 

Brief VCS history 

•  Version control systems (VCS) have been around for a 
long time: 
–  1st generation:  SCCS (72), RCS (82) 
–  2nd generation:  CVS (90), Subversion (2000) 
–  3rd generation: 

!  Mercurial/hg (2005) 
!  Git (2005) 
!  Gnu Arch (2001) 
!  Bazaar (2005) 

•  Mainly two groups: Centralized (CVCS) and distributed 
(DVCS) 
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Centralized Version Control Systems 
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Distributed Version Control Systems 
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CVCS vs. DVCS 

Centralized VCS: 
•  Checkout contains a 

single version 
•  History lives on server 
•  Commits are 

versioned 
•  Backup 
•  Access via account 
•  Examples: CVS, SVN 

Distributed VCS: 
•  Checkout contains all 

versions 
•  History lives locally 
•  Commits are local  
•  Commits build a 

graph 
•  Circle of trust 
•  Examples: git, hg 
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Why git? 

•  Distributed version control allows better workflows 
–  No locking 
–  No blocking commits 
–  No half-finished feature in the main line 
–  Partial merges possible 

•  Git is the most versatile tool 
•  Mercurial isn't bad, but poor branching model 
•  Git vs. Mercurial: Git seems to win the war 
•  CVS – stop living in the past 
•  SVN – has its right to exist (big files, restricted access) 
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Some words of warning 

•  Git is different 
–  Don't ask, "I did this in CVS, how do I do that in Git." 

•  Git has about 70 subcommands, I only know 20 
–  Don't try to understand every detail 

•  Git is a pro-tool (like rm), it can destroy data 
–  If you did something wrong, don’t touch it (like rm) 

•  Once shared (pushed) commits are hard to contain 
–  Think before sharing (like on facebook) 
–  Git is never central, even if you try very very hard 

•  Git’s community is not for everyone 
–  Friendly alternative: git@lanl.gov 
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Making a repository 

•  "git clone <URL>”  
–  URL = path, http{,s}, git, scp notation 

•  "git init" – create empty repo 
•  Repository = Working directory + ".git" folder 

–  There are bare/mirror repos without working directory, mainly for 
server 

•  Clone = init + pull + "add remote" 
•  Exercise: 

–  Clone gitlab-course/gitlab-course from gitlab.lanl.gov 
(use https “-c http.sslVerify=false” option, mind proxy) 

–  Init another repo, pull changes from local repo 
"git init repo2", "cd repo2", "git pull ../gitlab-course" 
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Git at LANL and on the IC machines 

•  LANL makes it hard! Custom https certificates and non-
transparent proxy setups are so 80’s! 
–  Stonix update will solve https issue 

•  Git respects http_proxy, https_proxy 
–  export http_proxy=proxyout.lanl.gov:8080 

•  Git can do ssh hopping 
–  echo "ssh wtrw ssh $@" > ssh_wtrw 
–  export GIT_SSH=ssh_wtrw 
–  Use ssh whenever you can 
–  Fancy version: https://hpc.lanl.gov/index.php?q=turq_scm_hints 

•  Use gitlab.lanl.gov for collaborative work inside LANL 
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Git setup 

•  Git supports local and global settings 
•  Identify yourself 

–  “git config (--global) user.name 'J. Robert Oppenheimer' " 
–  "git config --global user.email 'rjo@lanl.gov' " 
–  Id string will NOT be used for authentication! (Circle of Trust) 
–  Exercise: 

!  Setup up email, commit name globally 
!  Use your secret identity for one of the two repos 
!  Have a look at ~/.gitconfig and .git/config 

•  Use color:  "git config --global color.ui true" 
(Pointless in newer versions) 
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Making a commit   

•  Make a change 
•  Stage files 

–  "git add file" 
–  "git add –u" 

!  Never use “git add -A” 
!  “git add –p” to stage 

parts 

•  Check status 
–  "git status" 

•  "git commit" 

Commits are local, don’t try to 
make them global by pushing 
instantaneously: 
"Commit Often, Perfect Later, 
Publish Once" 
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Writing a good commit message  

•  A commit message should be useful! 
–  "Test", "Fix a bug", "Make something work" or "Not an empty 

message" is NOT useful 

•  Take 30 secs, it will be in logs forever 
•  Git convention: 

–  1st line: summary 50 char 
–  2nd line: empty 
–  >3rd line: details 

•  Made a mistake? No worries, "git commit --amend" is 
your friend! (Don't use if commit is already shared.) 
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Exercise – Making a commit 

•  Edit a file (FILE) 
•  "git diff" 
•  "git add FILE" 
•  "git diff --cached" 
•  "git status" 
•  "git commit" 
•  "git log -p" 
•  Pull that commit into 

the other repo 

•  Commit generates a 
hash that contains all 
metadata 

•  Hash is unique 
•  Commits are local 
•  Commits are NOT 

file-based 
•  Use EDITOR env. 

variable to change the 
default editor 
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Exchanging commits 

•  Commit can be shared via push and pull mechanism 
–  "pull" means: get a change from someone you trust 
–  "push" means: propagating a change to a place you have write 

permissions to 

•  Not every single commit needs to be pushed! 
•  Pulling is preferred (except for bare repos - needs push) 

–  Pushing to a normal repo brings workdir out of sync 
–  Pulling usually involves a merge (Pull = fetch + merge) 
–  Pulling gives control over whom you trust 
–  Push and Pull are not symmetric 

•  Commits can be transferred as files 
–  "git format-patch" + "git am" 
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Exercise – Mail a patch (more academic) 

•  Make a commit 
•   "git format-patch X" 

X=hash of the parent 
(look-up in "git log") 

•  Copy file to the other 
repo, apply it using 
"git am <file>" 

•  "git log --pretty=full" 

•  Hash has changed, so git 
won't know it is the same 
change! - "Think before 
pushing" 

•  Committer and author 
can differ 

•  Think again, who do you 
trust 

•  Hashes can be 
abbreviated (1st 8 
characters) 
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Branches and logical names (revs) 

•  Many git commands can act on a hash 
–  “git diff HASH”, “git log HASH” 

•  Using hashes directly is a bit cumbersome 
•  Logical names (convert to hash: "git rev-parse XXX") 

–  HEAD – the latest commit 
–  FETCH_HEAD – fetched hash, ORIG_HEAD, MERGE_HEAD 
–  Tags, Branch names 
–  Ancestors (^/~) 

!  HEAD^/HEAD~ - HEAD's 1st parent 
!  HEAD^^/HEAD~~ - HEAD's 1st parent's 1st parent 
!  HEAD^2 – HEAD's 2nd parent (only valid for merges) 
!  HEAD^2~ - HEAD's 2nd parent's 1st parents 
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Branches & tags 

•  Tags are just human-readable names for hashes 
–  E.g. "git tag last_working_version HEAD^" 
–  Tags can be annotated  (Author and Message) to be descriptive 
–  Tags are local, but can be pushed, pulled 

•  Branches are just sticky tags 
–  Branch name moves with the commit (if HEAD has a name at 

commit time) 
–  Branches are local until shared 

•  Git supports unnamed Branches, too 
•  "git branch" 

–  Default branch is "master", but not special 
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Exercise -  Pull from a remote, adding a remote 

•  Select random host 
•  Pull changes from 

that machine 
•  Check with ssh first 
•  "git pull 

user@host:path 
master" (scp notat.) 

•  Conflict? Fix it, then 
“git add -u” 
“git commit” 

•  Typing user@host:path is 
very cumbersome 

•  Add a remote: "git remote 
add NAME URL" 

•  “git remote update” 
•  "git pull NAME master" 
•  Look at remote branches: 

"git branch -r" (or "-a") 
•  Default remote: "origin" 
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Git vs. Mercurial vs. others 

CVS SVN Git  Hg 
Distributed X X 
Centralized X X 
Branches X X (copies) X 2X 
Tags X X X X 
Web-Server X 
Large Files X X X(ext.) X (ext.) 
Compression X X 
Global rev# X (per file) X X (per repo) 
Keywords X X X (only $Id$) X (ext.) 
Commands 30 34 >70 22 
Dependencies C C++ C, Perl, Bash C, Python 
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More about branches 

•  Create a branch “git checkout –b NAME START” 
–  Use "--track " option to create a branch map 
–  Default START hash is HEAD 

•  "git branch" 
–  -d delete: fully merged branch, -D force remove 

(Note: -d/-D just removes the name, not the commits themselves) 
–  -m move/ -M force move 

•  Pushing branches (if not tracked) 
–   "git push REMOTE FROM:TO"  (names can be crossed) 

(use empty FROM, to remove name on remote) 

•   Hashes as just unnamed branches 
•  One can use repos in different dirs instead of branches 
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Diffing branches / revs 

•  Simple diff of workdir: “git diff REV” 
•  Diff of missing parts (since last common ancestor) 

–  "git diff REV1...REV2"  (Mind 3 dots!) 
–  "git log REV1...REV2" 

•  Looking at the graph of merges 
–  "gitk" 
–  "git log --graph" 
–  “git log --decorate --oneline –graph” 

•  Full diff: "git diff REV1..REV2” (2 dots) 
–  "git log –left-right -p REV1..REV2" easier to read 
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Exercise – Showing differences 

•  Select another 
random host 

•  Fetch other host's 
master: "git fetch URL 
master" 

•  Find out what differs 
(use FETCH_HEAD) 

•  How many commits 
have been made? 

•  Good commit msg? 

•  Create a new branch 
“git checkout -b ..” 

•  Commit on the branch 
•  Switch back to master 

"git checkout master" 
•  Try to remove it 

"git branch -d NAME" 
•  Merge the branch 

"git merge NAME" 
•  Try to remove it again 
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Merging revs 

•  Pull implies a merge 
•  Git will remember, 

which parts have 
been merge before 
“git branch –contains” 

•  Git can remember 
merge resolutions: 
"git config --global 
rerere.enabled true" 
("reuse recorded 

•               resolution") 

No-fast-forward vs. fast-forward 
merge. 
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More a about merging 

•  Git has different merging strategies (“-s” option) 
–  "resolve" (default) 
–  “recursive” – Suboption (-X) “ignore-all-space” (yeah!) 
–  "ours" – "Ok, we will merge your feature" (if we have to) 
–  "octopus" – for more than two heads 

•  Alternatives (changing hashes) 
–  Pick a single commit: “git cherry-pick" 
–  Use patches "git format-patch" 
–  Squashing commits: "git rebase" – very 

useful on local banch! 

•  Server repo, one needs to merge 
before push. 
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Branch models 

•  Branches/Merges are easy: “Best practice is branch out, 
merge often and keep always in sync" 

•  Branches can be used for every new feature 
(development) and removed afterwards 

•  Linux kernel: 
–  Different repos (trees) for different architectures 
–  Branch for stable, development, features and next 
–  Rebase on local branches before pushing 

•  Scientific Project 
–  Stable, dev, next branch 
–  Bug fixes get merged up (stable -> dev) 
–  Test etc. live in submodules 
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Contribution models  

•  Distributed nature, git allows many contribution models: 
–  Email ("git am") 
–  Pull 
–  Push 

•  Server - push mechanism 
–  Ssh key management using gitolite, keys are in git repo 

themselves, restricted shell 

•  Github/Gitlab/Bitbucket as web platform  
–  Fork (clone) a repo, make commit, send pull request 
–  Pull request involves code review 
–  Project policy: Commit gets merged or rebased, squash rebased 
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Collaboration using gitlab 

•  Open-source version of github.com 
•  Instances: gitlab.lanl.gov and git.lanl.gov 
•  Fork and merge model (with review and 

contious testing) 
•  Comes with Issue tracker 

and wiki 
•  Cross-project referencing 
•  Magic commit messages 

–  “bla bla (fixes #23)” 
–  “bla bla (Related to #23)” 
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Exercise: Account Setup 

•  Create an ssh-key pair: “ssh-keygen” 
•  Primer on ssh-keys: Public key goes 

on the server, private key is private 
•  Go to gitlab.lanl.gov 
•  Login using Moniker/Cryto 
•  “Profile Settings” (on the left)  

–  “SSH Keys” (on the left) 
–  “Add a new key” (on the top right) 

•  Paste the content of the public key (.pub file) 
•  Try connection/setup: ssh git@gitlab.lanl.gov 



Slide 32 U N C L A S S I F I E D 

Pull request Workflow 
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Exercise: Fork a repo, push on a branch 

•  Go to https://gitlab.lanl.gov/gitlab-course/gitlab-course 
•  Fork the repo (by clicking Fork) into your namespace 
•  Go to your local gitlab-course ( the one with gitlab as 

origin remote) 
•  Add your Fork as a remote: “git remote add mygitlab 

 git@gitlab.lanl.gov:MONIKER/gitlab-course.git” 
•  Create a local branch: “git checkout -b killer_feature” 
•  Try to push the branch to the main repo (will fail): 

“git push origin killer_feature” 
•  Push to your fork: “git push mygitlab killer_feature” 
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Create a pull request 

•  Go to your fork on gitlab.lanl.gov 
•  “Merge Requests” (on the left) 
•  “New Merge Request” (top right) 
•  Pick your newly create branch (e.g. “killer_feature”) as 

source branch 
•  Look a the diff 
•  Write a merge request message 
•  Tag Ondrej on it (@certik) 
•  Open an issue complain about Ondrej’s slowness in 

reviewing and assign it to Christoph 
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Code Review 

•  A code review has two parts 
–  Auto-mated testing 
–  Human interaction 

•  Don’t break tests! 
•  Be open for critics (these  

poor guys have to maintain  
your crap till the end of time) 

•  Write Documentation now 
•  Don’t be shy, the sole purpose of Code Review is to 

improve code quality. 
•  Don’t create to large pull request, one feature at the time 
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Behind the Scenes 

•  CI in gitlab is based on docker 
•  Docker is like fakeroot, but in cool & safe 
•  Kernel feature 

–  Newer kernels can run docker in userspace 
–  For older kernel use double virtualization 

workaround 

•  Basically no overhead for  
virtualization 

•  User has “root” inside the container to e.g. install 
packages 
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Exercise: Make your reviewer happy 

•  Add another commit 
to your branch as per 
Ondrej’s suggestion 
and refer to an issue 
in commit message 

•  Push it to your fork 
•  Check if pull-request 

got updated 
•  Ask Ondrej to review 

again! 

CODE 
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Checking out pull requests  

•  Pull requests can be checked out and tested locally: 
–  “git fetch origin merge-requests/NR/head &&  

git checkout FETCH_HEAD” 
(merge-requests/NR/head  is a special reference name in gitlab) 

•  Can be make an alias (put this in your ~/.gitconfig) 
[alias] 

 pr-github = !sh -c 'git fetch origin pull/$1/head:pr-$1 && 
 git checkout pr-$1' - 
 pr-stash = !sh -c 'git fetch origin pull-requests/$1/from:pr-$1 && 
 git checkout pr-$1' - 
 pr-gitlab = !sh -c 'git fetch origin merge-requests/$1/head:pr-$1 
 && git checkout pr-$1' - 

Use “git pr-github”, “git pr-stash”, “git pr-gitlab” 
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Other git pearls 

•  Auto-add files: “git commit -a” 
•  Stash changes away without committing: "git stash" 
•  Grep from certain version: “git grep” 
•  Show files, part of git in workdir: "git ls-files" 
•  Who introduced that bug? "git blame FILE" 
•  Launch a web-server: "git instaweb" 
•  Clean up repo: "git clean”, together with .gitignore 
•  Check repo "git fsck" 
•  Shallow clones: "git clone --depth=X" 
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Other cool git things 

•  Git hooks 
•  Git attributes 
•  Git submodules, bisect 
•  Git sparse checkout 
•  git annex (Hello, haskell fans!) 
•  Gerrit Code-Review 
•  git fs & git lfs 
•  Github 
•  Git's interface to mediawiki 
•  Git as CVS/SVN client 
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More resources 

•  "man gittutorial{,-2}" 
•  git XXX --help | grep Examples 
•  Video: https://youtu.be/ZDR433b0HJY 
•  Game: http://pcottle.github.com/learnGitBranching/ 
•  Simple: http://rogerdudler.github.io/git-guide/ 
•  For Ruby friends: http://gitimmersion.com/ 
•  Everything: http://git-scm.com/doc 
•  Professional: https://www.udacity.com/course/ud775 
•  Graphical: http://onlywei.github.io/explain-git-with-d3/ 
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Rebasing and other backup 
slides 
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Changing history 

•  Rebase means 
something like: re-
apply the commit 
instead of merging it. 
(different hash) 

•  Git provides the very 
powerful rebase 
command 

•  Safest way to use 
"git pull --rebase" 

“We have to go back”, but 
changing the past is very 
dangerous! 
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Rebase vs. Merge 

Rebase 

Merge 
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Rebase in practice 

•  Rebase during pull 
"git pull --rebase" 

•  Explicit rebase 
"git rebase BASE" 
(won't merge) 

•  Implicit rebase and 
squash: 
"git commit --amend" 

•  Reworking a branch: 
"git filter-branch" 

Pushing rewritten branches: “Just 
one command away from deleting 
years of work – you have been 
warned!” 
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Exercise – Rebase a branch 

•  Make a commit on 
master 

•  Create a branch 
starting from HEAD^ 

•  Make some commits 
•  Rebase new branch 

on master: 
"git pull --rebase . 
master" 

•  Run gitk --all 
•  See if the commit msg 

shows up  twice 
•  Compare SHA 
•  Old SHA is still there 

"git log ORIG_HEAD" 
•  Rebasing can break 

correctness of 
intermediate commits! 
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Undoing things 

•  Undo edit: "git checkout -- file" 
•  Undo add: "git reset HEAD -- file" 
•  “git commit --amend” 
•  Revert a commit by applying the reverse: "git revert" 
•  "git reset" <REV> 

–  "--hard" go back, useful to move branch heads 
touches both workdir and stage 

–  "--soft” bring back pre-commit stage 
touches nothing (workdir and stage), just undo commit 

–  "--mixed" (default), resets the stage but not the working tree 

•  Squash: "git commit –fixup" + "git rebase --autosquash" 
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Exercise – Squash a branch into one commit 

•  Tag your current 
HEAD 

•  Do some commits 
with: "git commit 
--squash=TAG" 
(or --fixup=TAG) 

•  Rebase into a single 
commit onto TAG 
using: "git rebase -i 
--autosquash TAG^" 

•  Try: “gitk 
some_old_hash” 

•  Remove TAG 
"git tag -d TAG" 

•  Run" git gc  
--prune=all" 

•  Old hashes are gone 
•  Lost track, check git's 

blackbox: "git reflog" 


